If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20z^2-10z-3.75=0
a = 20; b = -10; c = -3.75;
Δ = b2-4ac
Δ = -102-4·20·(-3.75)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-20}{2*20}=\frac{-10}{40} =-1/4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+20}{2*20}=\frac{30}{40} =3/4 $
| 5/12x=48 | | 2(6-9m)-(5+3m)=0 | | 18+4d=64 | | 11x+10=6x-1 | | 7x-12=107 | | 15=5(a-5) | | 3+1x3=6 | | 21+3p=84 | | 6m^2+24m+7=0 | | 9b-32=76 | | -20+7x=43 | | 15=7-9t | | 15=7+t9 | | 6+a=18 | | 8x+11-11=180 | | (5/6y+1=-1/2y+1/12 | | 10=-12+2x | | 19=-12+2x | | 12x^2-11x-20=0 | | y=8(.85)^3 | | 2x+17=135 | | 5x+6=2x+45+60 | | 20/2x-6=x+6/36 | | 6(x-1)-4+11=x-1+x | | 2w^2-2w-6=0 | | 2(w^2-w-3)=0 | | 36+n+50=180. | | y=575(.4)^3 | | 44=3x+17 | | 60+118+60+x=360. | | 8x=-60 | | 2(x-3)+7-3x=11 |